Multi-label Learning with Missing Labels Using Mixed Dependency Graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-supervised Multi-label Learning Algorithm Using Dependency Among Labels

In this paper, we present a semi-supervised algorithm for multi-label learning by exploring the relationship among labels. Based on the accuracy, we determine the classification order for labels, a list of classifiers is trained by this order, with each classifier being trained by using the outputs of the previous classifiers in the list as additional input features. Experiments on three multi-...

متن کامل

Scalable Generative Models for Multi-label Learning with Missing Labels

We present a scalable, generative framework for multi-label learning with missing labels. Our framework consists of a latent factor model for the binary label matrix, which is coupled with an exposure model to account for label missingness (i.e., whether a zero in the label matrix is indeed a zero or denotes a missing observation). The underlying latent factor model also assumes that the low-di...

متن کامل

Large-scale Multi-label Learning with Missing Labels

The multi-label classification problem has generated significant interest in recent years. However, existing approaches do not adequately address two key challenges: (a) scaling up to problems with a large number (say millions) of labels, and (b) handling data with missing labels. In this paper, we directly address both these problems by studying the multi-label problem in a generic empirical r...

متن کامل

Improving Multi-label Learning with Missing Labels by Structured Semantic Correlations

Multi-label learning has attracted significant interests in computer vision recently, finding applications in many vision tasks such as multiple object recognition and automatic image annotation. Associating multiple labels to a complex image is very difficult, not only due to the intricacy of describing the image, but also because of the incompleteness nature of the observed labels. Existing w...

متن کامل

Facial action unit recognition under incomplete data based on multi-label learning with missing labels

Facial action unit (AU) recognition has been applied in a wild range of fields, and has attracted great attention in the past two decades. Most existing works on AU recognition assumed that the complete label assignment for each training image is available, which is often not the case in practice. Labeling AU is expensive and time consuming process. Moreover, due to the AU ambiguity and subject...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Computer Vision

سال: 2018

ISSN: 0920-5691,1573-1405

DOI: 10.1007/s11263-018-1085-3